

NGC 2237, la Rosette Lionel

1. Structure globale du traitement

Traitement en mode linéaire

Traitement en mode non-linéaire

Traitement final

2.1 Prétraitement des images : Luminance Ha

➔ Avant d'intégrer les images les unes sur les autres, je vais éliminer les plus mauvaises et choisir la meilleure qui me servira de référence pour l'intégration

La dernière image est la meilleure (frame8), les images 4, 6, 8, 9 et 11 (respectivement les images 12, 14, 16, 1 et 2) ont une FWMH supérieure à 3, je ne vais pas les retenir pour la registration.

→ ImageIntegration avec les 13 images restantes (13 x 10 min)

Avec des sigmas réglés à 4,5 la réjection est de 0,3% La qualité de l'image moyenne des 13 images est nettement meilleure qu'une seule image brute.

2.2 Prétraitement des images couleurs de Nicolas avec la lunette William Optics

→ Script / Batchprocessing / SubFrameSelector pour analyser les images

C'est la 1^{ere} image la meilleure, je n'utiliserai pas les 3 dernières.

→ ImageCalibration

Pour que le master_flat soit dans le même sens que les images, il faut le tourner de 90° vers la gauche Les flat permettent de se débarrasser proprement des poussières

→ *StarAlignment / ImageIntegration* avec les 16 images restantes (16 x 10 min) Avec des sigmas réglés à 4.00, j'ai une réjection de 0,174%

 \rightarrow Rotation de l'image avec *FastRotation* pour la mettre en format portrait comme l'image H α

On constate un gradient sur l'image qu'on éliminera avec DBE

2.3 Prétraitement de mes images couleurs avec le C14 et le réducteur Hyperstar

Les images 14, 15, 16, 18 et 21 ont une FWMH > 1,8", l'image 26 est à 1,372" c'est la meilleure.

→ Pour le cadran n°2

Les 10 dernières images prises un peu plus tard dans la soirée (à cause d'un passage de nuages) ont une FWMH > 2,2", toute la série des 2b. La meilleure image c'est la n°3 à 1,637".

➔ Pour le cadran n°3

Les images 4, 16, 3b-4, 5, 6 ont une FWMH > 2,2", toute la série des 2b. La meilleure image c'est la n°13 à 1,702".

Les images 6, 17, 19, 24, 25, 27, 28 ont une FWMH > 2,4", toute la série des 2b. La meilleure image c'est la n°2 à 1,880".

→ Debayer, ImageCalibration, StarAlignment, ImageIntegration pour chaque cadran.

Une fois encore, on voit le bénéfice de l'empilement de plusieurs images par rapport à une seule image brute RGB 2:1 integration2 | rosette_hyp3.fit - x + X L RGB 2:1 c_debayer_rosette_3_1_30s_9_C0 | c_debayer_ros... - x

es 4 images obtenues avec le C14 hyperstar

3.1 Traitement de l'image Ha

→ DBE pour corriger les gradients dans les coins, je positionne les pointeurs manuellement pour ne pas supprimer de nébulosités dans l'opération. Le fond de ciel semble être plus sombre vers la gauche qu'à droite.

Le fond de ciel est plus homogène sur toute l'image, les nébulosités ressortent déjà un peu mieux

→ DynamicPSF pour extraire la PSF de l'image. 86 étoiles sélectionnées sur l'image

	Gray 1:3 rosette_Ha_moy_DBE <*new*>		- - + ×									
		<u>77</u>				1	DynamicP5	F				x x
DBE				(Ch	В	A	cx	cy	sx	sy	FWH
Yor	er. 	•	Moffat			0.006747	0.220843	2457.53	1871.02	2.81	2.15	2.1
la n		▼★	- 18 G2/1	84	Θ	R MART		10/03/00/04	1 00000-1000		4.49.20	
tte) Moffat	05	0	0.007924	0.200245	1954.17	1962.70	3.69	2.55	3.(
rose		Y X	Moffat	85	U	0 006725	0 073754	1965 74	2114 42	3 18	2 22	3.(
		- +	norrae	86	Θ	0.000/25	0.0/3/34	1909.74	2114.42	5.10	2.22	5.0
			Moffat	10:05		0.009629	0.379223	2215.19	1664.76	3.39	2.47	2.(▲
							1					
		Star 86 of 8	6 /1 calacted		_				- N	0. (5	e1 67	
	· · · · · · · · · · · · · · · · · · ·		io / I selected					⊞ ⊡		130		
		PSF Model Fu	nctions									*
		Auto	Gaussia	n	[Moffat	Moffat	10 🔲 Moffa	st8			
		Circular D	Moffat4	anala		Moffat25	Moffat	15 🛄 Loren	tzian			
			sr 💌 signed	angle	•							
		Star Detection										¥
		Image Scale										¥
		⊾ ×									0	J B X
لح ح		A State of the	100 A									
- E	A THE SHARE SHARE A REAL OF A THE REAL	City winds										
0		- COMPANY LONG	8.6									

- → Tri des étoiles, sélection des 50 premières et extraction de la PSF
- → StarMask qui servira de référence pour éviter l'apparition d'anneaux autour des étoiles lors de la déconvolution

		StarMask	<u> </u>
	Noise threshold:	0.01000	
Gray 1:0 star_mask <*new*>	Working mode:	Star Mask	-
	Scale:	3	
8	Structure Growth		\$
	Large-scale:	1	
	Small-scale:	4	
	Compensation:	2 🜩	
	Mask Generation		\$
	Smoothness:	16 🜲	
		Aggregate	
		Binarize	
	Mask Preprocessi	ng	*
	Shadows:	0.00000	
	Midtones:	0.50000	
	Highlights:	1.00000	0
	Truncation:	1.00000	0
	Limit	1 00000	
	Limic	1.00000	
			DDX

→ Deconvolution

[3]	E) 🔂 📭	🛄 👩 📋 Gray	1 単 2 X 2 中 1		Je De	convolution		<u> </u>
-					PSF			*
		Gray 1:1 rosette_Ha	_moy_DBE->Preview01 <*new*>	0.000	Parametric PSF Motion Blur PSF	External PSF		_
e_Ha_moy_DBE					View Identifier PSF	t		
osette							13 x 13	
		the second			Algorithm			
ew01		Sec.			Algorithm: Regularized Richa	rason-Lucy		
Previ				Carlos	Target: Luminance (CIE)) 🔫		
		State State			Deringing	<u> </u>		*
		the second second			Global dark: 0.0300			
		the last			Global bright. 0.0000			
		The factor			✓ Local deringing)		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Local amount: 0,70		-0	
					Wavelet Regularization			*
					Noise model: Gaussian 🔻	Wavelet layers: 3 🗘	B3 Spline (5)	-
ы Б					Noise threshold	Noise reduction		
5		-			1: 5.00	1.00	0	
0		A CONTRACTOR OF A			3: 1.00	0.60		
					4: 1.00	0.70		
					5: 1.00	0.70		
					Convergence: 0.0000		Dis	abled
	🔀 Screen	TransferFunction: roset	tte □ ×		Dynamic Range Extension			¥
				10 A				N W

Pour faire les réglages rapidement, on teste sur un preview. Le réglage qui fait toute la différence entre des étoiles qui vont s'empâter et des étoiles qui vont être entourées d'anneaux sombres c'est le **Global dark**. Vers les valeurs élevées, les étoiles s'élargissent, vers les valeurs les plus petites les étoiles s'affinent.

De gauche à droite : 30 itérations sur le preview avec Global dark réglé à 0.01, 0.03, 0.05

Quand on a trouvé les bons réglages sur le preview, on les applique sur l'image, ici avec 50 itérations.

Les nuages obscurs ont des contours plus nets

Les filaments s'affinent, les étoiles sont plus piquées → Réduction du bruit avec *MultiscaleLinearTransform*

			MultiscaleLinearTransform			≖ ×
	,	Algorith	m: Starlet transform			-
Lay	ers					\$
•)yad	dic (Linear: 0 🔹	Layers:	5	-
Sca	ling	j functi	on: Linear Interpolation (3)			-
Lay	er	Scale	Parameters			
$\overline{}$	1	1	S(3.500,1.00,1)		_	
\checkmark	2	2	S(2.000,0.60,1)			
\sim	3	4				
~	4	8				
Ľ	5	16				
Ľ	к	52				
\checkmark	Det	ail Laye	er 2/5			*
		Bias:	0.000			
~	No	ise Redu	uction			\$
	Th	reshold:	2 000			
		mount	0.60	<u> </u>		
				-		
	ne	rations				_
브	Lin	ear Mas	k			Ŧ
ш	k-S	igma N	oise Thresholding			Ŧ
	Der	inging				- 🕶
Larg	je-S	cale Tra	ansfer Function			- 🗸
Dyn	am	ic Rang	e Extension			- 🕶
Taro	et:		Laver Preview	c		
RGE	3/K	compo	nents 💌 No layer pre	view		-
		0				D X
		~				

Là encore les paramètres sont à régler sur un preview pour ne pas perdre trop de temps...

Avant et après la réduction du bruit.

3.2 Traitement de l'image couleur de Nicolas

→ *DBE* pour corriger les gradients dans les coins, je positionne les pointeurs manuellement pour ne pas supprimer de nébulosités dans l'opération. Le fond de ciel semble être plus clair vers la droite, je place les pointeur en cercles concentriques autour du centre.

→ BackgroundNeutralization, ColorCalibration et DBE à nouveau, l'image était franchement verte RGB 1:5 rosette_Niko_moy_DBE_DBE | <*new*>

→ Réduction du bruit avec *MultiscaleLinearTransform*

			MultiscaleLinearTransform 2	× ×
		Algorith	nm: Starlet transform	-
Lay	ers			\$
•)ya	dic (Linear: 0 🚖 Lavers: 5	-
Sca	line	n functi	on: Linear Interpolation (3)	-
Law		Scale		
	er 1	Scale 1	S(2 500 1 00 1)	_
1	2	2	S(2.000,0.49,1)	
1	3	4	S(1.500,0.29,1)	
~	4	8		
1	5	16		
 	R	32		
~	No Th	ise Red reshold	uction : 1.500	*
	A	mount	0.29	
	Ite	rations	1	
	Lin	ear Mas	sk	Ŧ
	k-S	igma N	oise Thresholding	¥
	De	ringing		Ŧ
Larg	ge-S	Scale Tr	ansfer Function	Ŧ
Dyn	am	ic Rang	e Extension	Ŧ
Tarqu	et:		Layer Preview:	
RGE	3/K	compo	nents No layer preview	-
		0		25
-		-		

avant

après

Les 4 images du C14 hyperstar ont déjà été converties en non-linéaire pour pouvoir en faire la mosaïque, sinon il n'y a pas assez de signal pour bien égaliser le fond de ciel.

→ On fixe les seuils en envoyant la *STF* dans *HistogramTransformation*

4.1 Traitement de l'image Ha

→ Je fais un masque pour protéger le fond de ciel, STF binarisée dans l'histogramme que j'applique directement sur l'image pour ne traiter que la nébuleuse.

→ LocalHistogramEqualization appliqué 2 fois avec des paramètres différents pour travailler sur différentes échelles

🚯 LocalHis	stogramEqualization	× ×	LocalHistogramEqualization	ж X
Kernel Radius: 200			Kernel Radius: 40	
Contrast Limit: 2.0			Contrast Limit: 3.0 🛶	
Amount: 0.300			Amount: 0.100	
Histogram Resolution: 8-bit (25	i6) 💌 🗹 Circular Kernel		Histogram Resolution: 8-bit (256) 💌 🗹 Circular Kernel	
N 🖬 O	•	ЪЖ		ъж

On a une nette amélioration des contrastes

- → STF dans HistogramTransformation pour fixer les seuils
 → StarMask en mode « détection de structures »

		StarMask	<u> </u>
Gray 1:6 structure_map <*new*>	Noise threshold:	0.20000	
	Working mode:	Structure Detection	•
	Scale:	7 🗘	
	Structure Growth		\$
	Large-scale:	1 🚔	
	Small-scale:	4 🌩	
- · · · · · · · · · · · · · · · · · · ·	Compensation:	2 🚔	
· · · · · · · · · · · · · · · · · ·	Mask Generation		\$
	Smoothness:	16 🌲	
		Aggregate	
: : : : : : : : : : : : : : : : : :		Binarize	
		Contours	
· · · · · · · · · · · · · · · · · · ·	Mask Dreprocessi		*
	Shadows	0 00000	
	Midtones:	0.50000	
- > 밝혔다. 방법	Highlights	1,00000	
	Truncation	1.00000	
	Limit	1,00000	
		1.00000	

→ *ATrousWaveletTransform* avec le masque précédent

Ц	Gray 1:3 rosette_Ha_moy_DBE_clone <*new*>	🗕 🖛 🕂 🔣 🛛 ATrousWaveletTransform	X X
		Wavelet Layers	\$
clone		O Dyadic O Linear: 0 Layer	s: 8 🔻
DBE		Scaling Function: Linear Interpolation (3)	-
You		Layer Scale Parameters	
u e		✓ 1 1 +0.500 S(40.000,0.50,2)	
e.		2 2 +0.200 S(10.000,0.50,1)	
oset		✓ 3 4 +0.080	
e		4 8	
		5 16 +0.020	
		7 64 +0.030	
		8 128	
		✓ R 256	-
		Detail Laver 2/8	*
		Bias: 0.200	•
		Noise Reduction	\$
		Threshold: 10.00	
	and the second	Amount: 0.50	
		Iterations: 1	
		k-Sigma Noise Thresholding	Ŧ
		Deringing	¥
×		Large-Scale Transfer Function	¥
ц П		Dynamic Range Extension	¥
0		Turch Laure Destinut	

→ On augmente le contraste avec *CurvesTransformation* Gray 1:3 rosette_Ha_moy_DBE_clone | <*new*>

→ Script / Utilities / DarkStructureEnhance pour renforcer les nuages sombres. Même avec un réglage à 0.2, les contrastes sont un peu forts, je la combine à 50%, 50% avec un clone de l'image avant l'application du script. HistogramTransformation pour fixer les seuils

L'image Ha est prête.

4.2 Traitement de l'image couleur du C14 hyperstar

- → STF dans HistogramTransformation pour fixer les seuils
 → Réduction du bruit avec MultiscaleMedianTransform

			MultiscaleMedianTransform		жx
	1	Algorith	m: Multiscale median transform		-
Laye	rs				\$
• D	yad	dic (Linear: 0 🜲 Layer	s: 5	-
Laye	er	Scale	Parameters		
I	1	1	S(t=3.0000, s=1.00, a=1.0000)		
1	2	2	S(t=1.0000, s=0.30, a=0.3000)		
1	3	4			
1	4	8			
1	5	16			_
1	R	32			
					_
	_				_
	Det	ail Laye	r 2/5		
		Bias:	0.000		- 🛛
	Noi	ise Redu	uction		*
	Th	eshold:	1.0000		
	A	mount:	0.30		
	A	daptive:	0.3000		
	Lin	ear Mas	k		Ŧ
Dyna	am	ic Rang	e Extension		Ŧ
Ŧ					_
large	t: /V	compo	Layer Preview:		-
KOB	/ K	compo	No layer preview		
		0			вж

➔ Orientation des 3 images pour avoir le Nord vers le haut et l'Est vers la gauche, réelle apparence des objets dans le ciel. Pour cela il faut repérer 2 étoiles dont on connaît les coordonnées équatoriales et on oriente les images pour que la ligne qui joint les 2 étoiles ait la bonne direction.

Capture d'écran de Stellarium

HIP 31523 (en bas à gauche), et HIP 31019 (en haut à droite)	
--	--

	Α	δ	α (°)	δ (°)
HIP 31523	6h 36	4° 30'	99°	4,5°
HIP 31019	6h 30	5° 52'	97,5°	5,87°

Orientation de la ligne joignant les 2 étoiles (un angle qui visiblement est de l'ordre de 45°, par rapport à l'horizontale vers la droite)

$$Arctg(\alpha) = Arctg\left(\frac{5,87-4,5}{99-97,5}\right) = 42,4^{\circ}$$
Gray 1:6 Ha | <*new*>

A partir des coordonnées des étoiles sur l'image je calcule l'orientation de la ligne qui les joint

$$Arctg(\alpha) = Arctg\left(\frac{2508 - 594}{834 - 2286}\right) = 127, 2^{\circ}$$

L'image est orientée à 84,8° par rapport à l'image de la nébuleuse dans le ciel

C'est cette image qui me servira de référence pour la garder sous la forme d'un rectangle dont les côtés sont verticaux et horizontaux (si les images sont orientées d'une autre manière, le rectangle que je pourrai former avec le *Crop* diminuera trop les dimensions)

Sur l'image de Nicolas, l'orientation vaut

$$Arctg(\alpha) = Arctg\left(\frac{2105 - 800}{825 - 2200}\right) = 136,5^{\circ}$$

Elle est orientée à 9° par rapport à l'image H α

Sur l'image C14, il faut d'abord faire un miroir pour la retourner verticalement, *FastRotation*, miroir vertical L'orientation vaut

$$Arctg(\alpha) = Arctg\left(\frac{2247 - 21}{2723 - 763}\right) = 48,6^{\circ}$$

Orientée à -78,6° par rapport à celle de Fabien

Les 3 images sont maintenant orientées de la même manière, mais l'image de Nicolas est assez bruitée, les conditions de prises de vues étaient assez mauvaises, je ne vais pas l'utiliser pour la combiner avec l'image H α de Fabien.

Hα de Fabien

mon image couleur

- Combinaison de l'image Hα et de l'image couleur. Il faut fabriquer une image Luminance à partir du Hα et du canal rouge de l'image couleur, sinon les couleurs ne seront absolument pas naturelles.
 Il faut d'abord aligner les images pour qu'elles puissent être superposables avec *StarAlignment*
- ➔ Séparation des canaux de l'image couleur, et fabrication de la luminance de la manière suivante
 ▲ 1 L = 0.7 Le + 0.2 P

1. $L = 0.7 H\alpha + 0.3 R$ **2.** $R = 0.7 R + 0.7 H\alpha$

Pour cela on utilise le process *PixelMath* puis *LRGBCombination* puis *Crop*

→ *ColorSaturation* pour dynamiser un peu le rouge

→ CurvesTransformation

→ *MultiscaleMedianTransform* très léger pour accentuer les contrastes

M			MultiscaleMedianTransform	<u> </u>
	,	Algorith	m: Multiscale median transform	-
Lay	ers			\$
• 0)ya	dic 🤇	Linear: 0 🌲 Laye	ers: 5 🔻
Lay	er	Scale	Parameters	
1	1	1		
~	2	2		
∠	3	4		
×	4	8		
Ľ	5	16	+0.020	
`	к	32		
~	Det	ail Laye	r 4/5	\$
		Bias	0.000	
	No	ise Redi	uction	\$
	Th	reshold	1.0000	
	A	mount	1.00	
	Δ	dantive	0.0000	
		aupure	0.0000	_
	Lin	ear Mas	ĸ	*
Dyn	am	ic Rang	e Extension	Ŧ
Targ	et:		Laver Preview:	
RGE	3/K	compo	nents 💌 No layer preview	/ 🔻
		0		
		0		

→ *HistogramTransformation* et *Rotation* de 90° dans le sens indirect pour que l'image soit horizontale

Image finale

